Электротехника цепи постоянного тока решение задач

Электротехника цепи постоянного тока решение задач

Срок выполнения от 1 дня
Цена от 100 руб./задача
Предоплата 50 %
Кто будет выполнять? преподаватель или аспирант

УЗНАТЬ СТОИМОСТЬ РАБОТЫ
Теоретические основы электротехники являются фундаментальной дисциплиной для всех электротехнических специальностей, а так же для некоторых неэлектротехнических (например, сварочное производство). На этой дисциплине основываются все спец. предметы электриков. Несмотря на большой объем дисциплины и кажущуюся сложность, она основана всего на нескольких законах. В этой статье я постараюсь рассмотреть решение основных задач, встречающихся в данном курсе.

Законы Кирхгофа. Расчет цепей постоянного тока

В электротехнике существует два основных закона, на основании которых, теоретически можно решить все цепи.

Первый закон Кирхгофа выглядит следующим образом.
Сумма токов, входящих в узел, равна сумме токов, отходящих от узла.

Для данного рисунка имеем:
I1 + I2 + I4 = I3 + I5.

Второй закон Кирхгофа.
Сумма напряжений вдоль замкнутого контура равна сумме ЭДС вдоль этого же контура. Для схемы на рисунке (стрелкой обозначим направление вдоль контура, которое будем считать условно положительным).

Начиная с узла, где сходятся токи I1, I3, I4 запишем все напряжения (по закону Ома):
-I1⋅R1 — I1⋅R2 – в первой ветви (знак минус означает, что ток имеет направление противоположное выбранному направлению контура).
I3⋅R3 – во второй ветви (знак «плюс», направление совпадает).

Теперь запишем ЭДС:
E2 — E3 (знак «минус» у E3, потому что направление ЭДС противоположно направлению контура).

В соответствии с законом Кирхгофа напряжения равны ЭДС:
-I1⋅R1 — I1⋅R2 + I3⋅R3 = E2 — E3.

Как видите, все довольно просто.

В большинстве случаев перед студентами стоит задача рассчитать величины токов во всех ветвях, зная величины ЭДС и резисторов. Для расчета сложной, разветвленной цепи постоянного тока, например этой, найденной на просторах интернета, воспользуемся следующими действиями.

Для начала задаемся условно положительными направлениями токов в ветвях (это значит, что ток может течь и в противоположном направлении, тогда он будет иметь отрицательное значение).

Составляем систему уравнений по второму закону Кирхгофа для каждого замкнутого контура так, чтобы охватить каждый неизвестный ток (в данной схеме имеем 3 таких контура). Направления контуров выбираем для удобства по часовой стрелке (хоть это и необязательно):

По первому закону Кирхгофа составляем столько уравнений, чтоб охватить все неизвестные токи (в данной схеме для любых трех узлов):

Итого, имеем систему из 6 уравнений. Чтобы решить такую систему можно воспользоваться программой MathCad. Решается она следующим образом:

Это скриншот программы. Знак «равно» в уравнения должен быть жирным (вкладка «булевы», CTRL + “=/+”).
MathCad может решать системы любого порядка (например, схема имеет 10 независимых контуров). Но, во-первых, функция “Given” не работает с комплексными числами (об этом позже), во-вторых, не всегда есть под рукой компьютер или условие задачи поставлено так, что требуется решить схему другим методом.

Данный метод решения задач называется методом непосредственного применения законов Кирхгофа. Большинство студентов старших курсов (уже прослушавших курс ТОЭ), инженеров-электриков, даже преподавателей и докторов наук могут решать схемы только этим методом, т.к. другие методы применяются крайне редко.

Переменный ток.

Переменный синусоидальный ток (или напряжение) задается уравнением:

Здесь Im – амплитуда тока.
ω – угловая частота, находится как ω = 2⋅π⋅f (обычно в условии задается либо f, либо ω)
φ – фаза.

Обычно в задачах условия задают либо в таком формате, либо в действующем значении. Амплитудное больше действующего всегда в √2 раз. Если в условии задано просто значение (например, E1 = 220 В), то это значит, что дано действующее значение.

Если же в условии дано «250⋅sin(314t – 15°), В», то его нужно перевести в действующее комплексное значение.

Про комплексные числа можно подробнее прочитать на нашем сайте.

Для перевода величин к действующим необходимо:

,

Точечка над I означает, что это комплекс.

Чтобы не путать с током, в электротехнике комплексная единица обозначается буквой «j».

Для заданного напряжения имеем:

В решении задач обычно оперируют действующими значениями.

В переменном токе вводятся новые элементы:

Катушка индуктивности L – [Гн]
Конденсатор [емкость] С – [Ф]

Их сопротивления (реактивные сопротивления) находятся как:


(сопротивление конденсатора — отрицательное)

Например, имеем схему, она подключена на напряжение 200 В, имеющего частоту 100 Гц. Требуется найти ток. Параметры элементов заданы:

Чтоб найти ток, необходимо напряжение разделить на сопротивление (из закона Ома). Здесь основная задача – найти сопротивление.

Комплексное сопротивление находится как:

Напряжение делим на сопротивление и получаем ток.

Все эти действия удобно проводить в MathCad. Комплексная единица ставится «1i» или «1j». Если нет возможности, то:

  1. Деление удобно производить в показательной форме.
  2. Сложение и вычитание – в алгебраической.
  3. Умножение – в любой (оба числа в одинаковой форме).
Читайте также:  Комната 26 в припяти

Также, скажем пару слов о мощности. Мощность есть произведение тока и напряжения для цепей постоянного тока. Для цепей переменного тока вводится еще один параметр – угол сдвига фаз (вернее его косинус) между напряжением и током.

Предположим, для предыдущей цепи нашли ток и напряжение (в комплексной форме).

Также мощность можно найти и по другой формуле:

В этой формуле — сопряженный комплекс тока. Сопряженный – значит, что его мнимая часть (та, что с j) меняет свой знак на противоположный (минус/плюс).
Re – означает действительная часть (та, что без j).

Это были формулы для активной (полезной) мощности. В цепях переменного тока существует так же и реактивная мощность (генерируется конденсаторами, потребляется – катушками).

Реактивная мощность цепи:

Im – мнимая часть комплексного числа (та, что с j).

Зная реактивную и активную мощность можно подсчитать полную мощность цепи:

Для упрощенного расчета цепей постоянного и переменного тока, содержащих большое число ветвей, пользуются одним из упрощенных методов анализа цепей. Рассмотрим подробнее метод контурных токов.

Метод контурных токов (МКТ)

Данный метод подходит для решения схем, содержащих больше узлов, чем независимых контуров (например, схема из раздела про постоянный ток). Принцип решения состоит в следующем:

    Выделяем независимые контуры (их должно быть столько, чтоб охватить все неизвестные токи). Контурные токи обычно называют I11, I22 и т.д.

Определяем контурные сопротивления (сумма сопротивлений вдоль контура):

Далее определяются общие контурные сопротивления (те, что относятся одновременно к 2 контурам), они берутся со знаком минус:

Также определяем контурные ЭДС (алгебраическая сумма ЭДС вдоль контура):

Далее составляются уравнения (если имеем 4 контура, то система будет из 4 уравнений с 4 контурными токами в каждом, если из 5, то 5 и т.д.):

Данная система легко решается методом Крамера. Также в сети есть много онлайн-калькуляторов.

  • Зная контурные токи, можно найти токи в ветвях:
    I1 = I11 (в первой ветви протекает только контурный ток I11)
    I2 = I33 – I22 (направления контурного тока I33 совпадает с направлением I2, направление I22 – противоположно, поэтому берем со знаком минус)
    По аналогии находим остальные токи.
  • Данный метод, как и другие (например, метод узловых потенциалов, эквивалентного генератора, наложения) пригоден для цепей как постоянного, так и переменного тока. При расчете цепей переменного тока сопротивления элементов приводятся к комплексной форме записи. Система уравнений решается также в комплексной форме.

    Литература

    Из литературы можно порекомендовать Бессонова Л.А. «Теоретические основы электротехники: Электрические цепи». Также много информации в интернете на сайтах, посвященных электротехнике.

    Решение электротехники на заказ

    И помните, что наши решатели всегда готовы помочь Вам с ТОЭ. Подробнее.

    Решение задач занимают важное место в курсе ТОЭ, так как в процессе их решения проверяется степень усвоения теоретического материала, и приобретаются навыки, необходимые для приложения теории к практике.

    На примерах решения задач по ТОЭ представлены основные разделы современной теории электрических цепей, составляющие предмет теоретических основ электротехники ( ТОЭ ).

    Объем теоретического материала курса ТОЭ, представленный в виде кратких физических схем и подробно изложенных алгоритмов, позволяет непосредственно перейти к решению как типовых, так и задач, выходящих за рамки курса ТОЭ .

    Реализуется естественный принцип выборочного прочтения и быстрого нахождения нужной информации.

    Решение задач по ТОЭ делится на разделы, каждый из которых содержит краткое описание методов и алгоритмов решения задач ТОЭ.

    Общие рекомендации при решении задач ТОЭ:

    • заданные условия задачи должны быть тщательно проанализированы. Для этого их необходимо прочесть, как минимум, дважды: сначала бегло, схватывая смысл задания в целом, а затем медленно, стараясь подметить мелкие и, на первый взгляд, незначительные детали;

    • не стоит решать задачу по схеме, изображенной в расчетной работе, билете. Схему следует перерисовать в привычном для себя виде;

    • краткие условия задачи желательно приводить справа от расчетной схемы. На схеме должны быть обозначены все необходимые токи и напряжения, причем, желательно, все величины, относящиеся к одной ветви, обозначать одинаковым индексом: E1, U1, I1, R1. В расчетах не должно быть величин, которые не были бы обозначены на схеме;

    • полученный результат (результаты) расчета должен быть проверен, будь это баланс мощностей, векторная диаграмма, отдельное уравнение по одному из законов Кирхгофа или просто логическое рассуждение.

    05.12.2014

    Урок 25 (9класс)

    Тема. Расчет простых электрических цепей

    Решение любой задачи по расчету электрической цепи следует начинать с выбора метода, которым будут произведены вычисления. Как правило, одна и таже задача может быть решена несколькими методами. Результат в любом случае будет одинаковым, а сложность вычислений может существенно отличаться. Для корректного выбора метода расчета следует сначала определиться к какому классу относится данная электрическая цепь: к простым электрическим цепям или к сложным.

    Читайте также:  Фотоколлаж из трех фото

    К простым относят электрические цепи, которые содержат либо один источник электрической энергии, либо несколько находящихся в одной ветви электрической цепи. Ниже изображены две схемы простых электрических цепей. Первая схема содержит один источник напряжения, в таком случае электрическая цепь однозначно относится к простым цепям. Вторая содержит уже два источника, но они находятся в одной ветви, следовательно это также простая электрическая цепь.

    Расчет простых электрических цепей обычно производят в такой последовательности:

    1. Сначала упрощают схему последовательно преобразовав все пассивные элементы схемы в один эквивалентный резистор. Для этого необходимо выделять участки схемы, на которых резисторы соединены последовательно или параллельно, и по известным формулам заменять их эквивалентными резисторами (сопротивлениями). Цепь постепенно упрощают и приводят к наличию в цепи одного эквивалентного резистора.

    2. Далее подобную процедуру проводят с активными элементами электрической цепи (если их количество более одного источника). По аналогии с предыдущим пунктом упрощаем схему до тех пор, пока не получим в схеме один эквивалентный источник напряжения.

    3. В итоге мы приводим любую простую электрическую схему к следующему виду: Теперь есть возможность применить закон Ома — соотношение (1.22) и фактически определить значение тока протекающего через источник электрической энергии.

    сочетанДомашнее задание

    1. Ф.Я.Божинова, Н.М.Кирюхин, Е.А.Кирюхина. Физика, 9 класс, «Ранок», Харьков, 2009. § 13-14 (с.71-84) повторить.

    2. Упражнение 13 (задача 2, 5), упражнение 14(задача 3, 5, 6) решить.

    3. Переписать в рабочую тетрадь задачи 1, 3, 4 (см. следующие страницу).

    ии с составлением баланса

    Пи постоянного тока. Примеры решенных задач

    Рекомендации по решению нетрадиционных задач на расчет электрических цепей постоянного тока

    Введение

    Решение задач — неотъемлемая часть обучения физике, поскольку в процессе решения задач происходит формирование и обогащение физических понятий, развивается физическое мышление учащихся и совершенствуется их навыки применения знаний на практике.

    В ходе решения задач могут быть поставлены и успешно реализованы следующие дидактические цели:

    • Выдвижение проблемы и создание проблемной ситуации;
    • Обобщение новых сведений;
    • Формирование практических умений и навыков;
    • Проверка глубины и прочности знаний;
    • Закрепление, обобщение и повторение материала;
    • Реализация принципа политехнизма;
    • Развитие творческих способностей учащихся.

    Наряду с этим при решении задач у школьников воспитываются трудолюбие, пытливость ума, смекалка, самостоятельность в суждениях, интерес к учению, воля и характер, упорство в достижении поставленной цели. Для реализации перечисленных целей особенно удобно использовать нетрадиционные задачи.

    Задачи по расчету электрических цепей постоянного тока

    По школьной программе на рассмотрение данной темы очень мало отводится времени, поэтому учащиеся более или менее успешно овладевают методами решения задач данного типа. Но часто такие типы задач встречаются олимпиадных заданиях, но базируются они на школьном курсе.

    К таким, нестандартным задачам по расчету электрических цепей постоянного тока можно отнести задачи, схемы которых:

    1) содержат большое число элементов – резисторов или конденсаторов;

    3) состоят из сложных смешанных соединений элементов.

    В общем случае всякую цепь можно рассчитать, используя законы Кирхгофа. Однако эти законы не входят в школьную программу. К тому же, правильно решить систему из большого числа уравнений со многими неизвестными под силу не многим учащимся и этот путь не является лучшим способом тратить время. Поэтому нужно уметь пользоваться методами, позволяющими быстро найти сопротивления и емкости контуров.

    Метод эквивалентных схем

    Метод эквивалентных схем заключается в том, что исходную схему надо представить в виде последовательных участков, на каждом из которых соединение элементов схемы либо последовательно, либо параллельно. Для такого представления схему необходимо упростить. Под упрощением схемы будем понимать соединение или разъединение каких-либо узлов схемы, удаление или добавление резисторов, конденсаторов, добиваясь того, чтобы новая схема из последовательно и параллельно соединенных элементов была эквивалентна исходной.

    Эквивалентная схема – это такая схема, что при подаче одинаковых напряжений на исходную и преобразованную схемы, ток в обеих цепях будет одинаков на соответствующих участках. В этом случае все расчеты производятся с преобразованной схемой.

    Чтобы начертить эквивалентную схему для цепи со сложным смешанным соединением резисторов можно воспользоваться несколькими приемами. Мы ограничимся рассмотрением в подробностях лишь одного из них – способа эквипотенциальных узлов.

    Этот способ заключается в том, что в симметричных схемах отыскиваются точки с равными потенциалами. Эти узлы соединяются между собой, причем, если между этими точками был включен какой-то участок схемы, то его отбрасывают, так как из-за равенства потенциалов на концах ток по нему не течет и этот участок никак не влияет на общее сопротивление схемы.

    Читайте также:  Тестовые изображения для проверки монитора

    Таким образом, замена нескольких узлов равных потенциалов приводит к более простой эквивалентной схеме. Но иногда бывает целесообразнее обратная замена одного узла

    несколькими узлами с равными потенциалами, что не нарушает электрических условий в остальной части.

    Рассмотрим примеры решения задач эти методом.

    З а д а ч а №1

    Рассчитать сопротивление между точками А и В данного участка цепи. Все резисторы одинаковы и их сопротивления равны r.

    В силу симметричности ветвей цепи точки С И Д являются эквипотенциальными. Поэтому резистор между ними мы можем исключить. Эквипотенциальные точки С и Д соединяем в один узел. Получаем очень простую эквивалентную схему:

    Сопротивление которой равно:

    З а д а ч а № 2

    В точках F и F` потенциалы равны, значит сопротивление между ними можно отбросить. Эквивалентная схема выглядит так:

    Сопротивления участков DNB;F`C`D`; D`, N`, B`; FCD равны между собой и равны R1:

    С учетом этого получается новая эквивалентная схема:

    Ее сопротивление и сопротивление исходной цепи RАВ равно:

    З а д а ч а № 3.

    Точки С и Д имеют равные потенциалы. Исключением сопротивление между ними. Получаем эквивалентную схему:

    Искомое сопротивление RАВ равно:

    З а д а ч а № 4.

    Как видно из схемы узлы 1,2,3 имеют равные потенциалы. Соединим их в узел 1. Узлы 4,5,6 имеют тоже равные потенциалы- соединим их в узел 2. Получим такую эквивалентную схему:

    Сопротивление на участке А-1, R 1-равно сопротивлению на участке 2-В,R3 и равно:

    Сопротивление на участке 1-2 равно: R2=r/6.

    Теперь получается эквивалентная схема:

    Общее сопротивление RАВ равно:

    RАВ= R1+ R2+ R3=(5/6)*r.

    З а д а ч а № 5.

    Точки C и F-эквивалентные. Соединим их в один узел. Тогда эквивалентная схема будет иметь следующий вид:

    Сопротивление на участке АС:

    Сопротивление на участке FN:

    RFN =

    Сопротивление на участке DB:

    Получается эквивалентная схема:

    Искомое общее сопротивление равно:

    Задача №6

    Заменим общий узел О тремя узлами с равными потенциалами О, О1 , О2. Получим эквивалентную систему:

    Сопротивление на участке ABCD:

    Сопротивление на участке A`B`C`D`:

    Сопротивление на участке ACВ

    Получаем эквивалентную схему:

    Искомое общее сопротивление цепи RAB равно:

    Задача №7.

    “Разделим” узел О на два эквипотенциальных угла О1 и О2. Теперь схему можно представить, как параллельные соединение двух одинаковых цепей. Поэтому достаточно подробно рассмотреть одну из них:

    Сопротивление этой схемы R1 равно:

    Тогда сопротивление всей цепи будет равно:

    З а д а ч а №8

    Узлы 1 и 2 – эквипотенциальные, поэтому соединим их в один узел I. Узлы 3 и 4 также эквипотенциальные – соединимих в другой узел II. Эквивалентная схема имеет вид:

    Сопротивление на участке A- I равно сопротивлению на участке B- II и равно:

    RI =

    Сопротивление участка I-5-6- II равно:

    Cопротивление участка I- II равно:

    RIII =

    Получаем окончательную эквивалентную схему:

    Искомое общее сопротивление цепи RAB=(7/12)*r.

    З а д а ч а №9

    В ветви ОС заменим сопротивление на два параллельно соединенных сопротивления по 2r. Теперь узел С можно разделить на 2 эквипотенциальных узла С1 и С2. Эквивалентная схема в этом случае выглядит так:

    Сопротивление на участках ОСIB и DCIIB одинаковы и равны, как легко подсчитать 2r. Опять чертим соответствующую эквивалентную схему:

    Сопротивление на участке AOB равно сопротивлению на участке ADB и равно (7/4)*r. Таким образом получаем окончательную эквивалентную схему из трех параллельно соединенных сопротивлений:

    Ее общее сопротивление равно RAB= (7/15)*r

    З а д а ч а № 10

    Точки СОD имеют равные потенциалы – соединим их в один узел О I .Эквивалентная схема изображена на рисунке :

    Сопротивление на участке А О I равно . На участке О I В сопротивление равно .Получаем совсем простую эквивалентную схему:

    ЕЕ сопротивление равно искомому общему сопротивлению

    Задачи № 11 и № 12 решаются несколько иным способом, чем предыдущие. В задаче №11 для ее решения используется особое свойство бесконечных цепей, а в задаче № 12 применяется способ упрощения цепи.

    Задача № 11

    Выделим в этой цепи бесконечно повторяющееся звено, оно состоит в данном случае из трех первых сопротивлений. Если мы отбросим это звено, то полное сопротивление бесконечной цепи R не измениться от этого , так как получится точно такая же бесконечная цепь. Так же ничего не измениться, если мы выделенное звено подключим обратно к бесконечному сопротивлению R, но при этом следует обратить внимание , что часть звена и бесконечная цепь сопротивлением R соединены параллельно. Таким образом получаем эквивалентную схему :

    RAB=2ч +

    Решая систему этих уравнений, получаем:

    R=ч (1+ ).

    Ссылка на основную публикацию
    Шантаж фотографиями в контакте что делать
    Социальные сети привлекли к себе внимание большого количества людей. Это не могло не стать очередной лазейкой для желающих получить выгоду....
    Что такое shell core
    Офис built-to-suit Shell & core – состояние офисного помещения «под отделку», в данном помещении присутствуют только бетонная стяжка, стеклопакеты, подведенные...
    Что такое sptd в daemon tools
    Подлинный файл является одним из компонентов программного обеспечения SPTD Device Driver, разработанного Duplex Secure. Sptd.sys - это драйвер в Windows....
    Широта на карте это
    Это приложение предназначено для определения по картам географических координат местности на Земле. Программа определяет долготу и широту в выбранной точке...
    Adblock detector